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2| Problem: How to detect spatial randomness and
non-randomness?

Many disciplines need to determine whether x,y point pairs in a
field are randomly or non-randomly distributed in R2.

I Epidemiologists need to know if a new H7N9 outbreak is
localized to one neighborhood, or if the flu is spreading
randomly across a city.

I Geologists need to know whether mineral samples spread
across the surface are randomly distributed or if the samples’
distribution are evidence of a sub-surface deposit.

I Criminologists need to know if high crime in a neighborhood
reflects a real trend in order to efficiently alllocate police
resources.

I Biologists need to know if the spatial distribution of pine
beetles in a drought-stricken forest is random in order to
efficiently allocate biological controls.



3| Problem: Detecting spatial randomness
- an abstract example

Are these points randomly or non-randomly distributed?



4| Problem: Detecting spatial randomness - a cholera
outbreak in London in 1854

Are these cholera cases randomly or non-randomly distributed?

Figure : A variant of the original map drawn by Dr. John Snow, a British physician, showing location of cases
of cholera during the London epidemics of 1854. Credit: Wikipedia. Spatial Analysis.
http://en.wikipedia.org/wiki/Spatial_analysis. Accessed Apr. 16, 2013.



5| Problem: Detecting spatial randomness - nickel ore
deposits in Western, Australia in 2010

Are these nickel deposits randomly or non-randomly distributed
within the parent komatiite ore bodies? Should a company open a
new mine anywhere in the parent ore body, and should a developer
expect to extract a similar grade of nickel ore?

Figure : Fig. 2 in: Mamusel, A. et al. 2010. Spatial statistical analysis of the distribution of komatiite-hosted
nickel sulfide deposits in the Kalgoorlie terrane, Western Australia: clustered or not? Economic Geology.
105(1):229-242. doi: 10.2113 gsecongeo.105.1.229



6| One solution: Perform the Kolomogrov-Smirnov test on
the 2nd nearest neighbor distance between points.

I Using the Kolomogrov-Smirnov test, we will demonstrate how
to test the distribution of point pairs in R2 for randomness
where there is no underlying regression relationship. See Bain
and Engelhardt’s Introduction to Probability and
Mathematical Statistics at pp. 460-461.

I We will illustrate one limitation of the Kolomogrov-Smirnov
test to evaluate spatial randomness: the result of the
Kolomogrov-Smirnov test is affected by the shape of the
measuring frame.



7| Roadmap

I Kurt - 20 minutes.
I The distribution of the kth nearest neighbor (kthnn) distance

is a test statistic for spatial randomness. Slides 9 to 16.
I The distribution of kthnn distances of random points measured

within a finite observing frame intrinsically has a non-normal
distribution. Since kthnn distance distributions are non-normal,
the usual parametric tests cannot be applied. Slides 17 to 19.

I The Kolomogrov-Smirnov test provides an alternative test by
comparing two non-normal distributions. The non-random
distribution of a simulated ”random” kthnn distances in an
observing field is compared to the distribution of kthnn
distances in an actual data observing frame. Slides 20 to 24.

I Case study: Are 890 very small craters in an absolute modeling
age (AMA) observing field near lunar crater Hell Q spatially
distributed randomly or is the 890 crater sample spatially
distributed non-randomly contaminated by secondary impacts?
Slides 25 to 38.



8| Roadmap - continued

I Russell - 10 minutes.
I What effect does varying the height and width of the observing

frame have on the distribution of 2nd nearest neighbor
distances?

I Kurt and Russell - Optional wrap-up topics - 10 minutes.
I Future work. Slide 39.
I Other tests for spatial randomness. Slide 40-43.
I Suggested reading on spatial analysis. Slide 48.
I R packages for spatial analysis. Slide 49.
I The inverse problem - finding clusters. No slides.

I The importance of the finding cluster problem in modern
e-commerce.

I Cluster finding to define market segmentation.
I Cluster finding with kthnn to solve the retail clerk problem.
I The retail clerk problem automated as ”You would like”

recommendations on Amazon, Gmail, Yahoo Mail, and other
websites.

I Question and answer period.



9| Randomness - In Math 3070, ∆µ gave a R1 test
statistic.

In Math 3070, we learned how to detect whether two samples
taken from a randomly distributioned population are:

I Distinguishable, i.e. - the distance between the sample means,
spatially distributed along a R1 number line, cannot be
attributed to randomness; or,

I Indistinguishable, i.e. - the distance between the sample
means can be attributed to randomness.

Figure : Exercise 8.30 in Using R. Is the difference between the distribution of ages of mothers and fathers in
the babies database statistically significant?



10| Randomness - In Math 3070 for two sample tests, the t
statistic collapsed the problem of distinguishing between
random and non-random differences to R1.

t =
x̄ − x̄ −∆µ√

s2
1
m +

s2
2
n

with df = v .



11| Randomness - In Math 3080, spatial randomness was
associated with a f(x).

In Math 3080 and using regression modeling, we learned how to
determine if point pairs distributed in R2 could be associated with
various non-random patterns of functions, e.g. - linear, quadratic,
polynomial, exponential, power, or mixed function distributions.

Figure : A quadratic polynomial best-fit model for Math 3080, Final Project No. 4, that associates the

distribution of x,y point pairs, total annual cost of college (x) and student debt (y) in R2



12| Spatial non-randomness - In Math 3080, the difference

β̂1 − β1 provided a R1 test statistic.
In Math 3080 and using regression modeling, the the difference
β̂1 − β1 solved the problem of spatially associating points that may
be random in R2 with a non-random mathematical function.
Testing the difference β̂1 − β1 reduced the problem to R1.

Figure : Simulations of β̂1. Fig. 12.13 from Devore (2012).



13| Spatial non-randomness - In Math 3080 for linear
regression, the t statistic collapsed the problem of
distinguishing between random and non-random differences
in β̂1 − β1 to R1.

t =
β̂1 − β1

Sβ̂1

with df = n − 2.



14| Spatial randomness - But if there is no f (x), what is a
viable R1 test statistic?

If there is no underlying mathematical function to associate with
the distribution of the point pairs in R2, then how do you measure
and test spatial randomness? The point pairs shown in the figure
below have order (by angled geologic strata and by the division
between gaseous, solid and liquid matter), they are not spatially
distributed randomly, but there is no f (x) to regress on.

Figure : utah.Pictures.com. 2013. Sundial Peak, Big Cottonwood Canyon, Utah. Accessed Apr. 17, 2013.

What is a mathematical description of this field’s non-randomness?



15| Spatial randomness - If there is no f (x), the kth
nearest neighbor distance (kthnnd) provides a R1 test
statistic. How to find the 2nd nn distance:

I Take any point P(x1, y2).

I Find all Euclidean distances between P(x1, y2) and P(xi , yi )
for i = 1 to n, and store the distances in array D.

I Sort array D.

I Choose D3. This is the 2nd nearest neighbor P(x2nn, y2nn) to
P(x1, y2). (D1 is always zero, the distance between P(x1, y2)
and itself.)

Figure : Finding the Euclidean 2nd nearest neighbor distance.



16| Spatial randomness - 2nd nearest neighbor distances
provide only a relative indication of spatial distribution.

(a) 347 points in a data field (b) Histogram of 2nnds for 347
points

The 2nnd histogram (b - right) only indicates relative distribution,
and then, only if the distribution of 2knnd’s in the data sample is
compared to a second sample. The 2nnd histogram does not
indicate distribution with respect to a normal random distribution.



17| Spatial randomness - The 2nnd distribution is
intrinsically non-normal.

(c) Histogram of 2nnds for 347
points pairs

(d) QQ plot of 2nnds for 347 point
pairs

The 2nnd distribution is intrinsically non-normal, and thus, the
usual parametric tests cannot be applied.



18| Spatial randomness - The 2nnd distribution is
intrinsically non-normal because of information loss caused
by imposing a finite observing frame on an infinite random
point field.

Figure : Information loss from a finite measuring frame. Credit: Baddelely (2011) at p. 117.

Although the distribution of 2knn distances of a true infinite
spatially random field is normal, imposing an finite observing frame
causes information loss of the true 2knn distances for points near
the edge of the finite observing frame.



19| An aside - How to represent an infinite random field as
two R1 cdf vectors that enclose finite observing frames.

Figure : Two finite observing frames within an infinite random field.

Any R2 observing frame containing x,y point pairs can be scaled to
fit within this real number infinite probabiility space.



20| How do you test for spatial randomness when the data
and reference distributions are intrinsically non-normal?

An intrinsically non-normal 2nnd distribution can still be evaluated
for randomness by comparing the data field distribution to a
non-normal distribution of 2nn distances from simulated random
fields.

(a) 2nnds - Simulated
and actual counts

(b) Cumulative plot of
subfigure (a)

(c) ECFD plot of of sub-
figure (a)

The two-sample Kolmogorov-Smirnov test provides a method for
comparing any two non-normal distributions, after conversion of
each cumulative distribution to an empirical continuous function
distribution (ECFD).



21| Evaluating spatial randomness using the two-sample
Kolmogorov-Smirnov test.

The two-sample Kolmogorov-Smirnov (KS) test provides a method
for determing if any two non-normal distributions are equal.

(d) Two-sample Kolmogorov-
Smirnov (KS) test. The lines are
the ECFD of two non-normal distri-
butions. The arrow is the KS test
statistic D, discussed below.

(e) Andrej
Nikolajewitsch
Kolmogorov
(b.1903-d.1987)

Credits: Wikipedia. http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test,
http://en.wikipedia.org/wiki/Andrey_Kolmogorov. Accessed Apr. 17, 2013.



22| The two-sample Kolmogorov-Smirnov test
The two-sample Kolmogorov-Smirnov (KS) test provides a method
for comparing any two non-normal distributions by finding a width
±D around F (x)1 that contains F (x)2 with probability 1− α.

Figure : Illustration of two empirical CDFs compared using the
Kolmogorov-Smirnov test. After Bain (2009), Figure 13.1. D is the
critical characteristic, and D is the maximum y-distance between the two
ecdf’s.



23| The two-sample Kolmogorov-Smirnov test statistic

H0 : d1 = d2;Ha : d1 6= d2.

Reject H0; accept Ha, if KS >= critical value.

KS = max |Fn1
(x)− Fn2

(x)|

Fn1(x) and Fn2(x) are both ECFDs.

Source: Zillwinger (2003a). The KS statistic usually is denoted as
D, but here KS is used in order to avoid confusion with the use of
D for crater diameter, below.

A demonstration computation of the Kolmogorov-Smirnov method
with prediction intervals can be found in the REA Statistics
Problem Solver (1978) at Problem 20-10.



24| The two-sample Kolmogorov-Smirnov critical
distribution

For n > 40:

p-value Critical value of KS

α = 0.20 : KS >= 1.07

√
n1 + n2

n1n2
.

α = 0.10 : KS >= 1.22

√
n1 + n2

n1n2
.

α = 0.05 : KS >= 1.36

√
n1 + n2

n1n2
.

α = 0.01 : KS >= 1.63

√
n1 + n2

n1n2
.

α = 0.001 : KS >= 1.96

√
n1 + n2

n1n2
.

Note: Zillwinger (2003b). For critical values for n <= 40 with
small sample size corrections, see id.



25| Case Study: Are 890 very small craters near lunar
crater Hell Q spatially distributed randomly?

I Ha: 890 very small lunar craters in a 16km2 observing field
near lunar crater Hell Q are not spatially distributed randomly.

I Ho: 890 very small lunar craters in a 16km2 observing field
near lunar crater Hell Q are spatially distributed randomly.

I Test: Two-sample Kolmogorov-Smirnov to α = 0.10.

I Purpose: Before an absolute modeling age (AMA) for Hell Q
can be estimated, a precondition of modeling is that craters in
the observation field must be spatially distributed randomly. If
craters in the field are not spatially distributed randomly, the
craters in the field are re-examined for secondary impact
contamination, the secondary impact craters are excluded,
and then the spatial randomness test is repeated. The initial
count of 890 craters was preliminarily evaluated for spatial
randomness before more labor was expended to measure an
additioanl 600-800 craters.



26| Case study: background.
In southeast quadrant of large lunar crater Deslandres, the 4 km diameter

crater Hell Q is flanked by Cassini’s Bright Spot (CSB). In the 1670s,

italian astronomer M. Cassini speculated that the bright spot might be

an atmospheric cloud moving across the lunar surface.

Figure : Source: Fisher, K. 2012, Nov. 7. LPOD. http:\lpod.wikispaces.com/November+7,+2012 from
NASA, JPL, and Ariz. State. Univ. high-resolution LRO imagery. Scale: Hell Q is 4km in dia.



27| Case study: Background - the observing frame.
890 small craters were counted in an observing frame north of Hell Q.

Figure : Source: Per above. Scale: Hell Q is 4 km in diameter.



28| Case study: Background - craters within the frame.
Some of the 890 craters counted. Dots are proportional to crater dia.

Figure : Source: Per above. Scale: The observing frame is approx. 2.2 km wide.



29| Case study: Background - graphs of craters by
diameter bin.

Figure : Source: Per above. Scale: The observing frame is approx. 2.2 km wide and cover 16.2 km2.



30| Case study: Counts and 2nn distances for 890 very
small craters north of Hell Q.

Binned Crater Counts with 2nd Nearest Neighbor Distance
Characteristics (N=890)

Dlow Dupp n µ k2nnd σ2 k2nnd σ k2nnd

4 6 347 114.8 3879.0 62.3
6 8 283 122.4 5171.6 71.9
8 12 187 163.4 7817.6 88.4
12 20 58 293.1 28720.2 169.45
20 36 14 646.0 110674.0 332.7
36 68 1 na na na

Note: All distances are in meters. D = min. Feret’s diameter of
crater. The bins are open at the top of the interval, that is for bin
4-6, the diameters of craters in the bin are greater than or equal to
4 meters and less than 6 meters.



31| Case study: 2nn distances for 890 very small craters
north of Hell Q.

Figure : Histograms of distributions of k2nn crater distances in 4 of 5
observed field bins.



32| Case study: Cumulative actual and simulated 2nn
distances by binned crater diameter

Figure : Cumulative count distributions of actual and simulated fields for
4 of 5 bins.



33| Case study: ECFDs of actual and simulated 2nn
distances by binned crater diameters.

Figure : Cumulative Empirical Continuous Function Distributions of actual and simulated fields for 4 of 5 bins.



34| Case study: ECFDs of actual and simulated 2nn
distances for the largest 5th bin.

Figure : Cumulative Empirical Continuous Function Distributions of actual and simulated fields.



35| Case study: Results of the two-sample
Kolmogorov-Smirnov test.

Kolmogorov-Smirnov two sample test results of 2nn
distances binned by crater diameter (N=890) at significance

level α = 0.10

Bin Dlow Dupp n KS stat. KS p-value KS c.v. Random

1 4 6 347 0.814 0.20 0.087 Y
2 6 8 283 0.0812 0.16 0.096 Y
3 8 12 187 0.0599 0.33 0.118 Y
4 12 20 58 0.091 0.003 0.21 N†
5 20 36 14 0.142 < 0.0001 0.314‡ N†
6 36 68 1 na na na



36| Case study: Results of the two-sample
Kolmogorov-Smirnov test.

Notes to results table: α = 0.10, two-sided. KS stat. = the
Kolmogorov-Smirnov test statistic from comparing the distribution
of observed field k2nn distances with a simulated random field.
The KS statistic usually is denoted as D, but here KS is used in
order to avoid confusion with the use of D for diameter. KS
p-value = the p-value of corresponding to the KS statistic for a
field comparision. KS c.v = the KS critical value at the α = 0.10
significance level. Random = Conclusion of whether bin-field is
spatially random. Y=Yes; N=No. † = R’s ks.test function
returned a rejection p-value inconsistent with the critical value in
Zillwinger 2003a and 2003b. If the critical values used in Zillwinger
2003a and 2003b were used, these fields would be random. ‡ -
critical values for n <= 40 per Zillwinger 2003b. All distances are
in meters. D = min. Feret’s diameter of crater.



37| Case study: Conclusions from the two-sample
Kolmogorov-Smirnov test.

I Bins 1-3, dia.s 4-12 m, n=817: Craters are
spatially distributed randomly.

I Bin 4, dia.s 12-20 m, n=58: Craters are not
spatially distributed randomly, but the
non-random distribution may be the result of
secondary crater impacts contaminating the
field. This diameter bin will be retested after
secondary impact craters are identified and
removed from this subsample of 58 craters.



38| Case study: Conclusions from the two-sample
Kolmogorov-Smirnov test (continued).

I Bin 5, dia.s 20-36 m, n=14: Computer tabulated
Kolmogorov-Smirnov test results for this small 14 crater field
were inconclusive because both R and Mathematica returned
p-values and Kolmogorov-Smirnov critical values for
alpha = 0.10 that were inconsistent with the small sample
critical values in Zillwinger (2003b). The computer tabulated
results indicate that both R and Mathematica may not
incorporate small sample size corrections shown in Zillwinger
(2003b). R documentation states that its two sample KS test
results may be inaccurate for small sample sizes, but
Mathematica is silent on that issue. Manual recomputation of
the two-sample Kolmogorov-Smirnov test will be undertaken
in future work.



39| Case study: Future work.

I Plotting techniques in R will be improved to show the
two-sample Kolmogorov-Smirnov predictive interval envelope
for a given alpha. The second ECF distribution should lie
within the prediction interval of the first ECF distribution.

I For bin 4, secondary impact craters will be identified and
removed from the sample, and then the two-sample
Kolmogorov-Smirnov test will be rerun.

I For bin 5, manual recomputation of the two-sample
Kolmogorov-Smirnov test will be undertaken.

I For all bins, each bin will also be tested using the G test
implemented in the R-package spatstat and-or the mean 2nd
closest neighbor test. The two-sample Kolmogorov-Smirnov
test is strongest for detecting non-random 2nn distances that
are large, but the G test is more robust at detecting
non-randomness from small clusters of points.



40| Other tests - The weakness of the two-sample
Kolmogorov-Smirnov test.

I Comprehensive evaluation of the spatial randomness of a field
usually requires two test approaches. In the first approach, a
test that is sensitive to larger 2nnd distances is used, and in
the second approach, a test that is more robust at detecting
small clusters of points is applied.

I The two-sample Kolmogorov-Smirnov test is relatively less
sensitive to detecting small clusters of points.



41| Other tests - The G test

Another randomness test that is more sensitive to small clusters is
the G test (Bivand, Gómez-Rubio, and Pebesma (2008) at 161).
The G test is based on the complete spatial randomness theorem,
and the G test defines the expected distance between an event
relative to an arbitrarily selected event as the G function:

G (r) = 1− exp(−λπr2)

where λ is the intensity of events, that is the mean number of
events per unit area, r is the mean distance between all events in a
unit area, and the observed G statistic is:

Ĝ (r) =
#(di : di ≤ r ,∀i)

n



42| Other tests - The G test
G and G-like tests have a common algorithmic characteristic. The
observing field is divided in sub-blocks of random size by seeding
the observing frame with random points. A fiducial point is
selected within each sub-block, e.g. - the geometric center of the
sub-block or the actual point closest the geometric center.

Figure : Illustration of dividing an observing frame into random sized sub-areas using random seed points.



43| Other tests - The G test

The 1st or 2n nearest neighbor distances with respect to the
fiducial point are found within each sub-block. The distribution of
means or standard deviations of the kthnn distances within each
sub-block creates a new distribution. The process is repeated for
simulated random fields, and the resulting two distributions are
compared.



44| End of Part 1 - Kurt

Evaluating Spatial Randomness Using the Two-Sample
Kolmogorov-Smirnov Test

In Part 2, Russ will talk about how changing the shape of the
observing frame affects the result of the two-sample
Kolmogorov-Smirnov test.

Figure : Two finite observing frames within an infinite random field.



45| How to obtain the presentation archive copy

Evaluating Spatial Randomness Using the Two-Sample
Kolmogorov-Smirnov Test

This presentation’s archive link (active to May 5, 2013):
http://fisherka.csolutionshosting.net/

out/Present.html
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Bivand, R. S., Gómez-Rubio, V., & Pebesma, E. J. 2008. Applied
spatial data analysis with R. New York: Springer.

Devore, J. L. 2012. 8th ed. Probability and statistics for engineers
and scientists. Boston, Mass.:Brooks-Cole.



47| References

Research and Education Association. (1978). The statistics
problem solver. New York: REA. (At Prob. 20-10 demonstrating
Kolmogrov-Simirnov test computation).

Zwillinger, D. (ed.) 2003a. (31 Ed.) Table 7.14.9. Critical values,
two sample Kolmogorov-Smirnov Test. Section 7.14. In CRC
Standard Mathematical Tables and Formulae. Boca Raton,
La.:Chapman and Hall-CRC.

– 2003b. Table 7.14.8. Critical values, Kolmogorov-Smirnov Test.
Section 7.14. In CRC Standard Mathematical Tables and
Formulae. Boca Raton, La.:Chapman and Hall-CRC.



48| Suggested Reading

Baddelely, A. 2011. Analyzing spatial point patterns in R.
(Workshop Notes). Perth, Australia:CSIRO and University of
Western Australia. Retrieved Apr. 6, 2013, from
http://www.csiro.au/resources/pf16h.

Bivand, R. S., Gómez-Rubio, V., & Pebesma, E. J. 2008. Applied
spatial data analysis with R. New York: Springer. Available as
Marriott Library online holding.

Diggle, P. 2003. Statistical analysis of spatial point patterns.
London: Arnold. Marriott Library QH323.5 .D6 2003.

Gelfand, A. E. 2010. Handbook of spatial statistics. Boca Raton:
CRC Press. Available as Marriott Library online holding.



49| R packages for spatial analysis

Baddeley, A. and Turner, R. et al. 2013, Mar. 1. Spatstat, an R
Package. Computer software. (Version 1.31-1). Retrieved Apr. 3,
2013 from http://cran.r-project.org/web/packages/

spatstat/index.html. See also http://www.spatstat.org/.

Bivard, R., Lewin-Koh, N., and Pebesma, E. et al. 2013, Feb. 12.
Maptools, an R Package. Computer software. (Version 0.8-23).
Retrieved Apr. 17, 2013 from http:

//cran.r-project.org/web/packages/maptools/index.html

(Maptools is needed to manage spatial data used by spatstat.)




